

Project Overview

Ultra Long Duration Balloon Project (ULDB) **Project Overview** I. Steve Smith, Jr. NASA/GSFC/WFF Ira.S.Smith.1@gsfc.nasa.gov http://www.wff.nasa.gov/~web/ULDB/index.html

March 25, 1998 I. Steve Smith, Jr.

Project Overview

Agenda

8:30	Introduction	Smith
8:45	Overview	Smith
9:15	TIGER Science Instrument	Hink
9:45	Break	
10:00	Balloon Vehicle & Recovery Systems	Cathey
12:00	Lunch	
1:00	Ballooncraft	Stuchlik
3:00	Break	
3:15	Mission & Operations	Gregory
4:00	Summary	Smith
4:30	Adjourn	

Project Overview

Review Team

PSL/NSBF

Louis Vosteen/Chairman	LaRC, Retired
Michael Viens	541.0
Thomas Budney	570.0
David Shrewsberry	800.0
Robin Mauk	546.0
Joseph Duke	800.0
Joel Simpson	571.0
Philip Eberspeaker	546.0

Philip Copeland

Project Overview

Objective

Pevelop and Demonstrate the Technical Feasibility of a Low Cost, Integrated, Advanced Long Duration Balloon System Capable of Supporting Global Scientific Observations Above 99% of the Earth's Atmosphere for Durations Approaching 100 Days.

Project Overview

Scope & Guidelines

Scope

To Build Upon the Balloon Philosophy and Legacy in the Identification, Adaptation and Implementation of Relevant Technologies Found in the Aeronautical, Spacecraft and Military Environments in Order to Develop a New Science Support Capability.

Guidelines

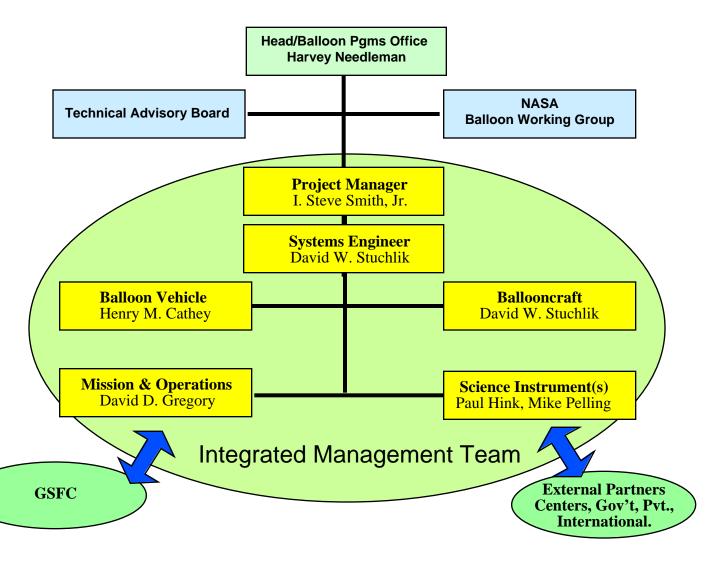
- Demonstrate Viability of New Carrier for Accomplishing Meaningful Science
- Demonstrate Necessary Technologies Associated with 100 Day Missions
- No New Program Money Identified
- Use Civil Service Personnel to Largest Extent Possible

Project Overview

Project Approach

- Demonstrate New Carrier Capability by the End of Year 2000.
- Primary Funding From Within Balloon Program -- No New Funds Identified
- ULDB Does Not Replace Existing Balloon Program
- Balloon Technology Development On-going in Parallel w/ ULDB Development Effort
- Fast Track Project
- Leverage off of LDB Program
- Incorporate New Technology As Funds and Schedule Allow
- Pursue Additional Technology Funding Sources
- Integrated Science and Technical Management, Development and Implementation Team
- Integrated Management Team (IMT): Comprised of Project, Systems and Science Instrument Managers
- Technical Advisory Group (TAG): Composed of Science & Technical Personnel Appointed to Review Development Progress

Project Overview


Background & Status

- Jun 96 "100 Day" Ballooning Planning Meeting Held at GSFC
- Oct 96 HQ Funded Requirements & Technologies Study for Long Duration Balloon Missions (Polidan Study)
- Nov 96 Workshop Held to Identify Science Requirements & Supporting Technologies for Use By Polidan Study
- Feb 97 Balloon Program Plan & Resources Defined for ULDB Development Effort
- Feb 97 First Hangar Balloon Test of New Composite Material
- Apr 97 Demonstration 2000 Science Candidates Identified
- May 97 Integrated Management Team (IMT) Established
- Jun 97 ULDB Technology Workshop Conducted at GSFC
- Sep 97 WFF Personnel Assigned to Development Team
- Oct 97 Requirements Defined
- Nov 97 Mission Definition Review Held
- Jan 98 Code I Meeting to Discuss International Overflight
- Feb 98 ULDB Demo 2000 Science Instrument Selected

Project Overview

Organizational Structure

March 25, 1998

I. Steve Smith, Jr.

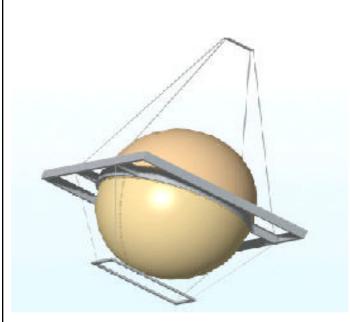
Project Overview

Management Plan

- IMT: Bi-Weekly Telecons
- Bi-Weekly Sub-System Progress Meetings
- Monthly Budget & Progress Reports
- Monthly Project Status with Head/820
- Alternating Site Quarterly Reviews (WFF, Washington University)
- Reviews (MDR, SDR, PDR, CDR, MRR)
- Technical Advisory Group (TAG) for Reviews
- Document, Interface & Configuration Control
- Web Site Information Dissimenation

Project Overview

Candidate Science Instruments


Discipline	<u>PI</u>	INSTITUTION
Cosmic Ray	Binns (TIGER)	WashU St. Louis
Cosmic Ray	Evenson (BACH)	Bartol Inst.
Gamma Ray	Leventhal (GRIS)	UMd/NRL
Gamma Ray	Lin (HIREGS)	UC Berkeley
InfraRed	Cheng (TopHat)	GSFC
InfraRed	Lubin (ACE)	UC Santa Barbara

March 25, 1998
I. Steve Smith, Jr.

Project Overview

Primary Instrument: TIGER

- Science
- PI
- Institution
- Payload Manager
- History
- Telemetry
- Cryogenics
- Mass
- Power
- Pointing
- Commanding
- Altitude
- Flight Latitude

Cosmic Ray

Robert Binns

Wash. U.

Paul Hink

Flt. Proven

4.4 - 5.7 kbps

No Rqmt.

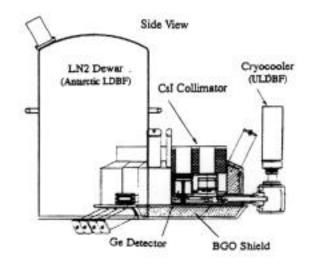
540 kgs

222 W day,

522 W night

No Rqmt.

< 1 per day


> 32.8 kms.

> 30 S

Project Overview

Back-Up Instrument: HIREGS

- Science
- PI
- Institution
- Payload Manager
- History
- Telemetry
- Cryogenics
- Mass
- Power
- Pointing
- Commanding
- Altitude
- Flight Latitude

Gamma Ray

Robert Lin

UC/Berkeley

Michael Pelling

Flt. Proven

10 kbps

3 Cryo-Coolers

616 kgs

627 W

0.2 Degree

4 per day

> 35 kms.

< 45 S

Project Overview

Technical Approach

Define & Document Requirements

(820-ULDB-DTRD-001.0)

- Identify Functional Elements
- Define Work Breakdown Structure
- Define Mission (MDR)
- Perform Trade Studies
- Define Systems To Meet Requirements
- Demonstrate Mission Feasibility (SDR)
 - Technical
 - Budget
 - Schedule